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This paper concerns a steady liquid-metal flow through an expansion or contraction 

with electrically insulated walls, with rectangular cross-sections and with a uniform, 
transverse, externally applied magnetic field. One pair of duct walls is parallel to the 
applied magnetic field, and the other pair diverges or converges symmetrically about 
a plane which is perpendicular to the field. The magnetic field is assumed to be 
sufficiently strong that inertial effects can be neglected and that the well-known 
Hartmann-layer solution is valid for the boundary layers on the walls which are not 
parallel to the magnetic field. A general treatment of three-dimensional flows in 
constant-area ducts is presented. An error in the solution of Walker et al. (1972) is 
corrected. A smooth expansion between two different constant-area ducts is treated. In 
the expansion the flow is concentrated inside the boundary layers on the sides which 
are parallel to the magnetic field, while the flow at the centre of the duct is very small 
and may be negative for a large expansion slope. In each constant-area duct, the flow 
evolves from a concentration near the sides at the junction with the expansion to the 
appropriate fully developed flow far upstream or downstream of the expansion. The 
pressure drop associated with the three-dimensional flow increases as the slope 
increases. 

1. Introduction 
Liquid-metal flows in electrically insulated ducts with strong magnetic fields occur 

in many energy conversion and materials processing applications. One example is the 
use of liquid lithium to extract energy from a fusion reactor and to breed the tritium 
to fuel the fusing plasma. The liquid lithium must be pumped through the strong 
magnetic field needed to confine the plasma. For many years, fusion-reactor feasibility 
studies assumed that no electrically insulating materials could be compatible with hot 
liquid lithium, so pressure drops were minimized by making the metal duct walls as thin 
as possible. Recent advances in material science indicate that certain electrically 
insulating coatings are compatible with hot liquid lithium, so that designs now assume 
that the duct walls are insulated. 

Fully developed flows in constant-area ducts require relatively small pressure 
gradients because all electric current must flow through the very thin Hartmann layers. 
The large electrical resistance of these thin layers limits the electric current and the 
associated electromagnetic (EM) body force opposing the flow. However, at an 
expansion or contraction or a change in magnetic field strength, axial voltage 
differences drive circulations of electric current in planes which are perpendicular to the 
magnetic field. These three-dimensional electric current circulations do not pass 
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through the Hartmann layers, so they can produce EM body forces opposing the flow 
which are much larger than those for fully developed flow. These three-dimensional 
pressure drops may dramatically increase the overall pressure drop needed to drive a 
given flow rate through a fusion-reactor 'blanket'. In addition to the extra pressure 
drops, the three-dimensional flow pattern is very important because convective heat 
transfer plays a key role in determining the thermal performance of the reactor. An 
expansion or contraction with a uniform transverse magnetic field represents an ideal 
prototype for investigating the physical phenomena associated with three-dimensional 
magnetohydrodynamic flows in insulated ducts. 

2. Problem formulation 
This paper concerns a steady liquid-metal flow through an expansion or contraction 

with electrically insulated walls, with rectangular cross-sections and with a uniform 
applied magnetic field. The planar sidewalls are parallel to the applied magnetic field 
and to each other. The characteristic length L is half the distance between the sides. The 
top and bottom walls diverge or converge symmetrically about a plane which is 
perpendicular to the applied magnetic field. 

In addition to the externally applied magnetic field, the electric currents in the liquid 
metal produce a secondary or induced magnetic field. The characteristic ratio of the 
induced to applied magnetic field strengths is the magnetic Reynolds number, 
R, = ,up vUL. Here ,up and v are the magnetic permeability and electrical conductivity 
of the liquid metal, while U is the characteristic velocity. We assume that R, is 
sufficiently small that the induced magnetic field can be neglected. Walker, Ludford & 
Hunt (1972) showed that the dimensionless electric current density is 0(Ha-l i2) ,  where 
Ha = BL(n/p)l12 is the Hartmann number, B is the magnetic flux density of the 
externally applied magnetic field and ,u is the viscosity of the liquid metal. Therefore 
the inductionless assumption requires that R,  Ha-l" < 1. 

In the Navier-Stokes equation, the characteristic ratio of the EM body-force term 
to the inertial term is the interaction parameter, N = aB2L/pU,  where p is the density 
of the liquid metal. We assume that N is sufficiently large that the inertial term can be 
neglected everywhere. Walker er al. (1972) showed that there are U(HU' /~)  
dimensionless velocities in sidewall boundary layers with O(Hu-l'') dimensionless 
thickness and that neglect of inertial effects in these high-velocity-side layers requires 
NHa-3'2 $ 1 .  

For the dimensionless Cartesian coordinates, the x-axis lies along the centreline of 
the duct and the y-axis is parallel to the applied magnetic field. The sides are at z = 1, 
the top and bottom are at y = +Ax) and the dimensionless applied magnetic field is 3, 
where 2, y", 2 are unit vectors. The velocity u, pressure p ,  electric current density j and 
electric potential function #I are normalized by U, nUB2L, CTUB and UBL, respectively. 
The dimensionless governing equations are 

0 = -Vp+jxy"+Ha-'VZv,  V - v  = 0, (la, b) 
j = - V q 5 + v x g ,  V - j = O ,  (lc,  4 

where (1 a) is the inertialess Navier-Stokes equation with the EM body force j x 3, (1 c) 
is Ohm's law with the static electric field - V$ and the induced electric field u x 9, and 
(1 b, d) guarantee conservation of mass and electric charge (Moreau 1990). 

The boundary conditions are 

v = O ,  j.ii = 0 at y = &.fix), 
v = O ,  j , = O  at z = & l ,  
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where Et is a unit normal to the top or bottom. Symmetry reduces the domain to 
0 < y <Ax), 0 < z < 1 with appropriate symmetry conditions, i.e. p is an even function 
of both y and z ,  while q5 is an even function of y and an odd function of z .  With the 
mean dimensional axial velocity at a square cross-section for U,  the dimensionless axial 
velocity must satisfy 1"' 1; u(x, y ,  z) dz dy = 1, (3) 

where u = u2 + ug -t wi. The solution of the homogeneous linear boundary value 
problem (l), (2) is scaled by (3). Since the problem is linear, the solution for any 
contraction is obtained by changing the signs of all variables in the solution for the 
geometrically similar expansion, i.e. replace the right-hand side of (3) by - 1. 

Walker et al. (1972) presented a large-Hartmann-number asymptotic solution of 
(1)-(3) with Ax) = a, for - cc < x < 0, and Ax) = a+bx, for 0 < x < co, i.e. for a 
constant-area duct joined to a semi-infinite expansion with straight diverging top and 
bottom. In each x = constant cross-section for y > 0 and z > 0, the domain is divided 
into (a) an inviscid core region with all O( 1) derivatives, (b) a Hartmann layer with an 
O(Hapl) thickness between the core and the top at y =f, (c) a side layer with an 
O(Ha-1!2) thickness between the core and the side at z = 1, (d) an intersection region 
with Ay = O(Ha-l) and Az = O(Ha-'/') between the side layer and the top at y = f'near 
z = 1, and (e) a corner region with Ay = O(Ha-') and Az = U(Hu-') between the 
intersection region and the side at y = fand z = 1. The slope of the top is discontinuous 
at x = 0, and there is an interior layer with Ax = O(Ha-l/') across the duct at this 
cross-section. 

In the expansion for x > 0, u in the core is O(Ha-1/2). and all the U(1) flow for (3) 
is carried by a u of O(Hal/') in the side layer. Walker et al. (1972) used Fourier 
transforms to reduce the expansion side-layer problem to an integro-differential 
equation and solved this equation with separation of variables. Their solution for the 
expansion side layer is correct. 

Far upstream in the constant-area duct, the flow is fully developed with 
u = a-1 + O(Ha-1/2) in the core and with a monotonic decrease of u to zero across the 
side layer. The key issue is how the U( 1 )  flow is transferred from the far upstream core 
to the side layer in the expansion at x = O+. Walker et al. (1972) indicated that there 
could be a u of ~ ( H U " ~ )  inside the side layer in the constant-area duct, so that part of 
the O(1) flow could enter the side layer upstream of the junction at x = 0. In their 
solution, the rest of the O(1) flow enters the interior layer at x = 0- and is carried by 
a w of O(Ha1'2) inside this layer to the side layer in the expansion. 

For the side layer in the constant-area duct, the equations and boundary conditions 
presented by Walker et al. (1972) are correct, but are incomplete because they do not 
include any condition from matching the corner region at y = a and z = 1 .  They stated, 
'This problem cannot be solved using [Fourier] transforms because the solution 
contains singularities [at y = a and z = 11 which are not acceptable to the transforms.' 
Using a superposition of the Green functions, they constructed a solution which 
satisfied their equations and boundary conditions. They acknowledged that their 
Green function solution is singular at the corner, but they did not investigate whether 
the corner-region solution could match the singularity in their side-layer solution. 
Cook, Ludford & Walker (1972) illustrated the critical role of the corner-region 
matching condition in a side-layer or interior-layer boundary value problem. Integrals 
of j ,  at y = a in the constant-area-duct side-layer solution of Walker et al. (1 972) reveal 
that there is an O(Ha-'") electric current between the side layer and corner region, i.e. 
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the singularity in their solution represents a source or sink of O(Hapl/’) electric current 
at the corner. With intersecting insulated walls, the corner region cannot provide or 
accept this current. When a corner-region matching condition excluding an electric 
current source or sink at the corner is added, the constant-area-duct side-layer problem 
of Walker et al. (1972) has only a zero solution, indicating that side layers with a u of 
O(Ha1I2) are not possible in a constant-area duct. Therefore all the O(1) flow and the 
O(Ha-l12) electric current must be transferred from the upstream core at x = 0- to the 
downstream side layer at x = O+ through the interior layer and through its intersection 
with the side layer with A.x = ~ ( H Q ~ ’ ’ ~ )  and Az = O(Ha-l/’) at x = 0 and z = 1. 
Walker et af. (1972) did not treat the intersection of the side and interior layers, but 
they hypothesized that certain variables are continuous between the upstream and 
downstream side layers. Without a high-velocity side layer in the constant-area duct, 
these variables cannot be continuous and the intersection of the side and interior layers 
must be more complex than hypothesized by Walker et al. (1972). 

Hunt & Ludford (1968) showed that an MHD flow with a strong transverse 
magnetic field and with insulated walls is constrained to follow certain characteristic 
surfaces. In the expansion of Walker et af. (1972), these surfaces are the cross-sections, 
forcing all the O(1) flow into the side layer. In the constant-area duct, there are no 
characteristic surfaces, and the flow is relatively free. It is not surprising that the abrupt 
transition between a free flow and a highly constrained flow would be very complex, 
as it was in the solution of Hunt & Ludford (1968) for an obstacle in a constant-area 
duct. Here we avoid the difficulties of treating an abrupt transition because we only 
consider smooth expansions and contractions in which the slope and curvature of the 
top and bottom are continuous everywhere. 

One alternative to the large-Hartmann-number asymptotic solution with the various 
subregions is a numerical solution of ( l ) ,  (2) for an arbitrary value of Ha. Since we are 
interested in the range Ha = 103-105, any numerical scheme would need sufficient grid 
or collocation points inside the Hartmann layer, side layer and intersection region in 
order to resolve their large derivatives. Since the Hartmann layer and intersection 
region are much thinner than the side layer, their resolution would consume most of 
the computational resources. The Hartmann layer and intersection region involve a 
monotonic velocity variation which satisfies the no-slip condition at the top and which 
matches the tangential core or side-layer velocity. Therefore the arbitrary-Hartmann- 
number approach wastes most of the computational resources on the very uninteresting 
Hartmann layer and intersection region. Since the Hartmann layer and intersection 
region play a key role in the electric circuit, they cannot be ignored. Fortunately they 
both have the same simple, local, exponential structure (Moreau 1990). 

In this paper we use the well-known analytical solution for the Hartmann layer and 
intersection region, and we devote all the computational resources to the core and side 
layer. This composite core-side-layer approach was developed by Ting et 01. (1993), 
who treated the three-dimensional flow in a constant-area rectangular duct with thin 
electrically conducting walls and with a non-uniform transverse magnetic field. In 
terms of the asymptotic solution for Ha 9 1, which involves asymptotic expansions in 
Hap1/’, the composite core-side-layer approach accurately combines the first two terms 
in both the core and side-layer asymptotic expansions into a single solution. The 
composite solution offers four advantages, namely: (i) there is no ambiguity about 
where the separate core and side-layer solutions apply for finite values of Ha, (ii) it 
indicates the presence or absence of a high-velocity side layer without a priori 
assumptions of orders, (iii) it includes the O(Ha-1’2) core velocity so that it does not 
indicate that the core fluid is stagnant for any f’ of O(1) and (iv) it includes both 
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O(HaP1I2) and O(I3a-l) electric currents and pressures, so that it includes the electric 
currents through the side and Hartmann layers and it includes both the O(HU-' /~)  
three-dimensional pressure drop and the O(Hu-') fully developed flow pressure 
gradient, as well as all other O(Ha-') pressure variations. We solve the composite 
core-side-layer problem with series of Chebyshev polynomials which automatically 
exclude singularities at the corner at y =f and z = 1. Like the Fourier transform 
solutions of Walker et al. (1972) for the expansion side layer, our Chebyshev 
polynomial solutions automatically satisfy the corner-region matching condition. 

We consider a smooth expansion between two different constant-area ducts, so that 
f' andf" are continuous everywhere, and there are no interior layers. We drop the 
viscous term 

from (1 j, and we drop any term in an expression which is O(Hapl) smaller than another 
term in both the side layer and core. For example, we also drop Ha- a 2 w / b 2  from the 
z-component of (1) because it is O(Hu-') whilej, is O(1) in a high-velocity side layer, 
and it is O ( H C ~ )  while j ,  is O(Ha-l/') or @Ha-') in a core region. 

Ha-2(i32u/ax2 + a2u/ay2) 

With simple manipulations, (1) become 

where 

The terms Hap2 C?'u/az2, Ha-' a3pplC?x &?, and HapZ c'4~/ax2 az2 have been dropped from 
(4u), (4f)  and (4h) ,  respectively. The problem has been reduced to two scalar functions 
governed by (4g, h). The boundary conditions at z = 1 are obtained by introducing 
( 4 4  b, c , f )  into (2c ,  d )  and no term is dropped. 

The Hartmann-layer and intersection-region conditions at y =Ax) require the right- 
handed orthogonal curvilinear coordinates n, s, z, where M is the distance from the top 
along the unit normal ii into the liquid metal and s is the distance along the top in the 
positive x-direction in any z = constant plane. Walker et al. (1972) derived the 
conditions for a core or side layer from the local exponential Hartmann-layer and 
intersection-region solutions. For the present top with one degree of curvature, the 
conditions are 

at n = 0, where K = - ( f i .E) - ' .  The right-hand side of ( 5 a )  is O(Hu-') smaller than the 
left-hand side for both the core and side layer, so that the composite core-side-layer 
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normal velocity is zero at the top. The right-hand side of (5b) is comparable to the left- 
hand side for both the core and side layer, reflecting the important role of the 
Hartmann layer in the electrical circuit. Introducing (4), ( 5 )  become 

at y =fix). The terms a3$/3yy2C?z and i33$/c?x2y2z have been dropped from (6b) 
because they are (Ha-') smaller than HUC?~$/~~~J?C?Z  in both the core and side layer. 
Neglecting the O(Ha-l) volumetric flux deficiency in the Hartmann layer, the 
composite core-side-layer solution satisfies (3). 

In this paper we only consider a smooth expansion between two constant-area ducts 
with f = e, for x <  -i, f = ed for x > and 

f = i(ed + e,) + &(e, - e,) X( 15 - 10X2 + 3X4) (7) 
for -i < x < i, where X = x / i .  Here the origin lies at the centre of the expansion, 
while Walker et al. (1972) placed their origin at the junction of their constant-area duct 
and their expansion. In the next section, we present a general solution for the three- 
dimensional flow in a constant-area duct with a uniform magnetic field. In 94, this 
solution is used for x < - i and x > L^, and a numerical solution for the expansion for 
-i < x < i completes the solution. 

3. Three-dimensional flow in a constant-area duct 

constant, we introduce the eigenfunction expansions 
For the three-dimensional flow in a finite-length or semi-infinite duct with f = e = a 

xi 

$ = ( C , - K x ) y +  X Cnhn1~n,(y,Z)exP(h,x), (8 b) 

where Qfd  and K are the electric potential function and constant pressure gradient for 
fully developed flow. Equations (4g, h) are the governing equations for each pair of 
eigenfunctions $n,, $n and for Qfd.  WithJ" = 0, (6) become 

n=1 

at y = e. Equations ( 2 c ,  d )  become 

at z = 1. The boundary conditions for q ? ~ ~ ~  are (9b)  with A, = 0 and (10a, b) with 
a$,/a, replaced by -K. Each solution for An $; 0 automatically makes a zero 
contribution to (3) ,  so that (3) determines K and scales $fd. 
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FIGURE 1. Axial velocity ufd at y = 0 for fully developed flow in a square duct (e = 1) for: 
(i) Ha = lo3 and (ii) Ha = lo4. 

For a Chebyshev spectral collocation solution (Canuto et al. 1988), we introduce the 
series 

N Y  N Z  

5% = c z 4 2  T,,(Y) %n+l)(Z), (114 

$n = c c El! qZE+l)(Y) T,,(z), (11b) 

E=O m-0 

( N Y - 1 )  ( N Z + l )  

1=0 m-0 

where Y = y / e  and T,(x) = cos [n arccos (x)] are the Chebyshev polynomials. Equation 
(1 1 a) is also used for q5fd. The collocation points are I; = cos (fi/2NY), zk = 
cos (kx /2NZ) .  Equations (4g ,  h) are applied at the interior collocation points. 
Since (4g, h) do not involve A,, we solve the resultant algebraic equations for 
( 2 N Y x N Z - N Y - N Z )  of the unknown coefficients in terms of the remaining 
(4NY+ 2NZ+ 1) coefficients for 1 = 0 or m = 0 and 1. Equations (9) are applied at the 
collocation points zk  at y = e, and (10) are applied at the collocation points at z = 1. 
Introducing the solution for (4g,  h), we obtain a relatively small matrix whose 
determinant gives the characteristic equation for A:. For each A, Al2 and BE(&) are 
determined with the normalization that each mode’s axial velocity is - 1 at y = z = 0, 
because we expect three-dimensional effects to reduce u at y = z = 0 from its fully 
developed value. Equation (3) scales 

Since there is no need to resolve the Hartmann layer, small values of NY are 
sufficient. All the results in this paper were the same for N Y  = 4,5 and 6 .  Since the side 
layer is resolved, NZ must be larger and must be increased as Ha is increased. 
Fortunately the collocation points zk are concentrated near z = 1. For all results to be 
independent of NZ,  we needed NZ = 24 for Ha = lo4 and NZ = 30 for Ha = lo5. 

The axial velocity at y = 0 for fully developed flow for e = 1 and Ha = lo3 and lo4 
is plotted in figure 1. For Ha 3 lo3 and all values of e, the values of K agree very well 

and determines K. 
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FIGURE 2. Axial velocity u2 at y = 0 for the second eigenvalue, for e = 1 and for: 
(i) Ha = lo3 and (ii) Ha = lo4. 

with the values computed from the O(Ha-l) and O(HU-~/’) terms in the large-Ha 
asymptotic solution for the fully developed flow pressure gradient (Roberts 1967). 

None of the eigenfunctions involve a high-velocity side layer. Certain eigenfunctions 
have an O(1) velocity overshoot inside the side layer, but these overshoots all decrease 
as Ha is increased. For the second eigenvalue for e = 1, ~ ~ ( 0 ,  2)  is plotted in figure 2 for 
Ha = lo3 and lo4. For Ha = lo5, the side layer for every eigenvalue has a monotonic 
variation of u from 0 at z = 1 to the core value. 

The numerical results indicate that the eigenvalues can be grouped into three 
families. For two of these families, the values of A, have very weak variations with e, 
and these variations become even weaker as Ha is increased. For large Ha, the 
eigenfunctions in these two families are independent of y (or linear in y for $,). The 
characteristics of these two families for Ha % 1 are easily derived from the problem 
(4g, h), (9), (10) with 3$,/i3y = az$,/3y2 = 0, and these characteristics agree very well 
with the numerical results for Ha = lo3, lo4 or lo5. 

For Ha % 1, and for the first family of eigenvalues, A, = (k  + 0.5) 7[: + O(HuP), for 
k = 0,1,2, . . ., and for any e. The core solutions for this family for Ha % 1 are 

2Ha , 2Ha 
eAi eA3, 

$, =  sin (A, z )  - z cos (A, z),  p ,  = ~ cos (A,L z) ,  

u, = A, z sin (A ,  z )  - cos (A, z) ,  w, = A, z cos (A ,  z), 

while v, = O(Ha.’) andj,, = O(Ha-’). Sincej,, are O(Ha) larger than u, and 
w,, these are electric-current modes - when they complete the circuit for the O(Hu-’”) 
three-dimensional electric current, the associated fluid velocity is O(HaP3’’). 

For Ha P 1 and for the second family of eigenvalues, A, = kn+ O(Ha-’/’) for 
k = 1,2,. . ., and for any e .  These eigenvalues approach their large-Ha values more 
gradually than the first family. For example for arbitrary values of Ha and for e = 1, 
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A, is 10.133, 9.557 and 9.458 for Ha = lo3, lo4 and lo5, respectively, while 3.n = 9.425. 
The weak variations with e vanish as Ha is increased. The core solutions for this family 
for Ha % 1 are 

u, = - cos (A, z) ,  w, = sin (A, z), $, = -A;' sin (A ,  z ) ,  

while j,,, j,, and p ,  are O(Ha-1/2). The cosine variation of u for k = 1 is evident in 
figure 2. These modes play a role in the redistribution of both flow and electric current 
since the U(1) flow is tied to the O(Ha-l/') electric current. 

The numerical determination of the values of A, for arbitrary values of Ha and any 
e yields a list of eigenvalues. The eigenvalues that are converging to either (k+0.5).n 
or kn: as Ha is increased are easily identified. The remaining eigenvalues for an 
arbitrary Ha are the members of the third family. The A, in the third family vary as 
e is changed, and the eigenfunctions involve variations with y ,  even for large values of 
Ha. For Ha = lo3, the first eigenvalue in this family is 3.359, 1.630 and 1.088 for e = 1 ,  
2 and 3, respectively. The eigenfunctions have the same orders as the second family, i.e. 
u ? ~ ,  w, and $, are O( l ) ,  while j,,, j,, and p,. are 0(Ha-'l2). 

Many problems involve two semi-infinite, constant-area ducts with uniform 
magnetic fields, which are separated by a source of a three-dimensional disturbance, 
such as an expansion, a non-uniform magnetic field region or a manifold. In all such 
problems, the present eigenfunction solutions can be used in the constant-area ducts 
with the coefficients C, for each constant-area duct determined by matching the 
numerical solution for the finite-length disturbance region. The advantage over 
extending the numerical solution far upstream and downstream in the constant-area 
ducts is that the eigenfunction solutions involve only a few unknowns. Obviously the 
eigenvalues occur in pairs, f A,, In the next section the positive and negative values are 
used for - cc < x < -i and L < x < co, respectively. For a finite-length duct with 
three-dimensional disturbances at both ends, both positive and negative eigenvalues 
would be kept. 

4. Solution for a smooth expansion 
For x < -i or for x > i, we use ( 8 )  with the K, $ f d ,  positive or negative A,, $, and 

@, for Ha and e = e, or e = ed. The pressure level is fixed by setting CO = 0 in the 
downstream solution, i.e. so that the pressure far downstream is - K d x .  For the 
expansion for -i < x < 2, we introduce Y = y / f (x ) .  This has little effect on (4g, h), 
but (2c, d )  and (6) are changed. Paralleling ( 1  l), we introduce the series 

N X  N Y  N Z  

4 = C Z: C Anlm T,(W T,z(Y) 7;2m+l)(z), (124 

@ = C C C Bntm Tn(X) q2t+ll(Y) T z m ( ~ ) .  (12b) 

n=O Z=O m=O 

N X  (NY-1)  ( N Z + l )  

n=O l = O  m=O 

The axial collocation points are Xi = cos (i.n/NX). Equations (4g, h)  are applied at the 
interior collocation points, (6) are applied at the collocation points on the top at Y = 1 
and (2 c, d )  are applied at the collocation points on the side at z = 1. At x = f i, $, +, 
a$/ax and a@/ax must be continuous. Continuity of $ and 1c. is applied at every 
collocation point at x = f i. Since f'( f i) = f"( i) = 0, the equations show that 
continuity of a$/ax and a$/ax along the lines at x = --i, y = e, and at x = L, y = ed 
is sufficient to guarantee their continuity over the rest of these cross-sections. The 
number of collocation points along the lines at x = --i, y = e, and at x = L, y = ed 
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FIGURE 3. Results for Ha = lo3, e, = 1, ed = 2 and i = 1. (a, b) Axial velocity u at y = 0 us. z :  (i) 
x = - 1.5, (ii) x = - 1.0, (iii) x = -0.5, (iv) x = 0: (v) x = 0.5, (vi) x = 1.0 and (vii) x = 1.5. (c) Axial 
velocity u at y =O us. x: (i) z = 0 and (iij z = 0.98. (d )  Rough sketch of streamlines for the integrals 
of u and w from y = 0 toy  =Ax). (ej Pressurep at y = 0 17s. x: (i) z = 0 and (ii) z = 1 .O. (f) Contours 
of constant pressure in the y = 0 plane. 
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determines where the series (8) are truncated. The downstream-duct series are 
truncated at n = (2NZ-  l), but the upstream-duct series are truncated at n = (2NZ-  2) 
because (8) still includes the constant pressure C, to be determined. We used NX = 24 
for every case presented here. A smaller value of NX would probably have given 
equally good results but we did not explore this possibility because the code required 
so little time. Each case required less than 20 minutes on a Convex C3880 
supercomputer using four parallel processors. 

For every case presented here, e ,  = 1 ,  i.e. a square upstream duct. The remaining 
parameters are Ha, ed and i. We consider variations from a base case with Ha = lo3, 
ed = 2 and i = 1. The base-case results are presented in figure 3 .  In the upstream 
constant-area duct, the flow migrates towards z = 1 .  At x = -i, u is 0.62 and 1.7 at 
z = 0 and z = 0.96. At x = -0.5 and x = 0, there is a strong side-layer jet with a 
maximum value of u of 6.6 or 0 . 2 1 H ~ ~ / ~ .  There is some residual flow in the core, but 
it is very small at x = 0. As x increases from zero, the flow migrates out of the side layer 
and into the core. At x = L, there is a modest flow concentration near z = 1 which 
decays in the downstream constant-area duct. Along the centreline at y = z = 0, u 
reaches a minimum of 0.018 or 0.57Ha-1'2 at x = 0.3. The velocity at z = 0.98 is 
between the peak side-layer velocity and the side for this Ha, but the curve in figure 3 ( r )  
still illustrates the growth and decay of the side-layer jet in the expansion. The 
maximum side-layer velocity occurs upstream of the minimum core velocity because 
the cross-sectional area is increasing. 

Since the flow is three-dimensional, there is no stream function, but there is a stream 
function for the integrals of u and w from y = 0 to y =Ax). A rough sketch of the 
streamlines for these integrals of u and w is presented in figure 3(d ) .  In the upstream 
constant-area duct the flow migrates towards z = 1. As x increases from - 1, the flow 
migrates into the side layer where it is concentrated for roughly -0.5 < x < 0.5. The 
return to the downstream fully developed flow is similar to the upstream departure 
from its fully developed flow. Walker et  al. (1972) treated an abrupt change in slope 
where the flow was transferred from the core to the side layer inside an interior layer 
at the cross-section of the junction. With the present smooth geometry, their interior 
layers are spread over the regions of the expansion for roughly 0.5 < 1x1 < 1.0, where 
the slope gradually changes from zero to an O(1) value. Virtually all the required 
vertical redistribution of the flow occurs in the expansion, especially near x = 0. 

For e, = 1 and ed = 2, the values of qi at z = & 1 are roughly f 1 and f0.5 in the 
upstream and downstream fully developed flows, respectively. The associated axial 
voltage differences drive axial electric currents in the positive and negative x-directions 
for z > 0 and z < 0, respectively. Since there are no axial currents in fully developed 
flow, the circuit for the axial currents must be complcted by positive and negative 
values ofj, upstream and downstream, respectively. Equations ( 4 4  i) indicate that the 
integral of j ,  from z = 0 to z = 1 equals the pressure difference between z = 0 and 
z = 1. The vertical distance between the two curves in figure 3 (ej is proportional to the 
axial electric current at each cross-section. Therefore the axial electric current is 
maximum near x = 0, and there are still some axial currents at x = +2. Walker et al. 
(1972) showed that forf' = O(1), the axial electric current is confined to the side layer, 
while j ,  = 0(Hap3/')  in the core. Since the thin side layers have a large electrical 
resistance, the O( 1) axial voltage differences only drive an O(Ha-l"j axial electric 
current inside the side layers, but this current is still large compared to the O(Ha-l) 
fully developed flow current. The current in the positive z-direction upstream creates 
a large pressure drop along the centreline. When the same current flows in the negative 
z-direction downstream, it creates a pressure rise along the centreline. Since the 
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FIGURE 4. Axial velocity u at x = y = 0 for e, = 1, ed = 2 and i = 1 : 
(i) Hu = lo3 and (ii) Ha = lo4. 

transverse current is spread over a larger Ay downstream, the downstream pressure rise 
is smaller than the upstream pressure drop, so that the three-dimensional electric 
current circulation produces a net pressure drop ApSD. The same net pressure drop 
occurs at the side, but here it is due to the much larger viscous shear stresses associated 
with the 0(Hu1/') velocities in the side layer. The larger pressure gradient at the side 
wall of the expansion is evident in figure 3(e) .  We define Ap3D relative to a reference 
pressure variation, namely p = - K, x for x < 0 and p = - Kd x for x > 0, where K, 
and Kd are the pressure gradients K for the fully developed flows in the upstream and 
downstream constant-area ducts. The values of K,  and Kd used in the reference 
pressure are the values determined in the numerical solutions for the constant-area 
ducts. As x+ co, the actual and reference Dressures amroach the same straight line 
with slope Kd, but as x + - co, the actual and reference pressures approach two parallel 
straight lines, both with slope K, and with the actual pressure greater than the 
reference pressure by Ap,,. For - i < x < L, the reference pressure drop is larger than 
that for locally fully developed flow at each cross-section of the expansion, but the 
locally fully developed pressure variation is not a good reference because its evaluation 
would require a numerical integration of the fully developed pressure gradient for each 
Ax). For Ha = lo3 and f?d = 2, the reference pressure drop is larger than the locally 
fully developed drop by 1.663 x lV4L.  For the base case, Ap3D = 1.682 x lo-'. 
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FIGURE 5. Axial velocity u at x = y = 0 for Ha = lo3, e, = 1 and L = 1 : (i) ed = 1.5, 
(ii) ed = 2.0 and (iii) ed = 3.0. 

The contours of constant pressure in the y = 0 plane for the base case are presented 
in figure 3 ( f ) .  The expansion occupies - 1 < x < 1.  In the core, these isobars are the 
streamlines forj, and j ,  because the last term in ( 4 f )  is negligible. Inside the side layer, 
the transverse current j ,  is turned by the insulated side to flow upward to the 
intersection region at y = f. In ( 4 f )  Ha+ a3$/az3 cancels ap/dx at z = 1 ,  so that j ,  is 
zero at the side. The isobars in figure 3 cf) illustrate the three-dimensional circulation 
of electric current driven by the axial voltage differences. The concentration of axial 
electric current in the side layer is evident near x = 0 where the slopef' is maximum. 
Far upstream and downstream, the isobars would be vertical lines in figure 3 0 .  

For e, = 2 and i = 1, we obtained results for Ha = lo3, 5 x lo', lo4, 5 x lo4 and lo5. 
The formula 

Ap3D = 0 .6168H~-~ /~ -2 .68Ha-~  

gives values which fit the results for all five cases. The axial pressure variations for all 
five cases look like the curves in figure 3 (e ) ,  except that the magnitudes of all pressures 
decrease as Ha is increased. The distance upstream and downstream of the expansion 
required to complete the circuit for the three-dimensional electric current and to 
achieve fully developed flow is roughly Ax = 2 for every case. The maximum side-layer 
velocity at x = -0.3 is 23 or O.23Ha1/' for Ha = lo4 and 75.9 or O.24Ha1/' for Ha = lo5. 
The axial velocities at x = y = 0 for Ha = lo3 and lo4 are plotted in figure 4. The 
minimum centreline velocity occurs at x = 0.3 for all five cases and decreases as Ha is 
increased until umta = 0.002 for Ha = lo5. 

= 1 ,  100Ap31, is 0.9545, 1.682 and 2.453 for e, = 1.5, 2 and 3, 
respectively. Since the downstream values of $ at z = f 1 are roughly f l/e,, the three- 
dimensional electric current circulation and A P , ~  increase as ed is increased. Again the 
axial pressure variations look like the curves in figure 3(e), but the slope o fp  at z = 1 
in the expansion increases as e, is increased. For Ha = lo3 and i = 1, the minimum 
centreline velocity is 0.070, 0.018 and -0.0054 for ed = 1.5, 2 and 3, respectively. For 

For Ha = lo3 and 
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FIGURE 6. Results for Ha = lo3, e,  = 1 and ed = 2. (LI) Pressure p at y = 0 for 6 = 20: (i) z f 0 and 
(ii) z,= 1.0. (6)  Axial velocity u at x y = 0 for: (i) L = 0.25, (ii) L = 0.5, (iii) L = 1.0, (iv) L = 2.0, 
(v) L = 4.0, (vi) L = 10.0 and (vii) L = 20.0. 

ed = 3, there is a small recirculating flow near x = 0. The axial velocities at x = y = 0 
for ed = 1.5, 2 and 3 are plotted in figure 5. For ed = 3, there is a velocity dip just 
outside the side layer, so that the largest negative velocity is u = -0.2 at z = 0.75. 

For Ha = lo3 and ed = 2, 100A~,~ is 2.120, 1.938, 1.682, 1.399, 1.088, 0.5552 and 
0.0816 for i = 0.25, 0.5, 1, 2, 4, 10 and 20, respectively. In the expansion, the axial 
electric current is confined to the side layer. When I: is small, the short expansion 
represents a smaller resistance to the axial voltage difference, and the three-dimensional 
electric current circulation is larger. As becomes large, the flow should become 
locally fully developed, but Walker & Ludford (1972) showed that this requires 
i % For i = U(Ha1/2) the current and flow from the side layer are spread over 
the entire cross-section, but there are still significant three-dimensional effects. The 
axial pressure variations plotted in figure 6(a) illustrate that there is still a pressure 
difference between z = 0 and z = 1 due to axial currents for i = 20 = 0 .63H~l ’~ .  The 
axial velocity at x = y = 0 is plotted in figure 6(b)  for the seven values of I:. For 
i = 0.25 and 0.5, there is reverse flow just outside the side-layer jet. In the expansion 
the maximum slope is 15(ed - eJ/ 1 6 i  at x = 0 so that increasing (edA-eu) or decreasing 

increases the slope and a large slope leads to reverse flow. For L = 20, the velocity 
is essentially that for locally fully developed flow, even though the pressure and electric 
current are not. 

5. Conclusions 
We have presented a method to treat three-dimensional liquid-metal flows in 

electrically insulated ducts with rectangular cross-sections and with strong transverse 
magnetic fields. The eigenfunction solutions can be used for many different problems 
involving a three-dimensional disturbance between two constant-area ducts. We have 
shown that side layers with large 0(Haliz) velocities do not occur in constant-area 
ducts, although the core flow often becomes concentrated near the sides. We have 
applied our method to a smooth expansion between two different constant-area ducts. 
High-velocity side layers do occur in the expansion, and the core velocity near the 
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cross-section with maximum slope is often very small or negative for strong three- 
dimensional effects, i.e. large aspect ratio differences between the two ducts or short 
expansions with large slope. In many technological applications the objective is to 
minimize the overall pressure drop, based on the small O(Ha-l) pressure gradient for 
the fully developed flow in an electrically insulated duct. However, the O(Ha-l'') 
pressure drops associated with three-dimensional current circulations at expansions, 
contractions, non-uniform magnetic field regions, elbows, manifolds, etc., may make 
major contributions to the overall pressure drop. Extremely gradual transitions over 
dimensionless lengths which are much greater than Hall' are required to avoid three- 
dimensional pressure drops and to achieve locally fully developed flow. 

There is only a minor difference between the present solution and that presented by 
Walker et af. (1972). In both solutions, the flow for z > 0 in each constant-area duct 
near its junction with the expansion is concentrated near the side at z = 1. In the 
solution of Walker et al. (1972), this flow concentration is split between an 0(Hali2) 
velocity in the side layer and a large, but 0(1) velocity in the core near z = 1 .  In the 
present corrected solution, there is no 0(Ha1") velocity in the constant-area-duct side 
layer, so that the flow concentration in either constant-area duct involves only a large 
O( 1) core velocity near z = 1. 

The present flow is essentially what one would expect from the characteristic-surface 
concept of Hunt & Ludford (1968). The relatively free flow in a constant-area duct and 
in the part of the expansion wheref' < Ha-li2 responds to the three-dimensional effects 
by moving towards the side. The flow in the expansion wheref' 2> is blocked by 
the characteristic surfaces and is concentrated as an O ( H L Z ~ / ~ )  velocity in the side layer. 
In figures 3 (a)  and 3(h) ,  u at x = f 0 . 5  and at x = 0 has a high-velocity side layer and 
only an O(Hap1/2) residual velocity in the core. 

The relationship betweenf' and Ha-'" is best illustrated by the velocity profiles in 
figure 6(b). For curves (it(vii), f'Ha"' is 118.6, 59.3, 29.7, 14.8, 7.4, 3.0 and 1.5, 
respectively. For f 'Hu1/' > 7, there is a distinct side layer and a very small core 
velocity, although the side layer occupies 0.4 < z < 1 for J'IHa'/2 = 7.4. For 
f 'Ha1l2 = 3, there is only a core with slight flow concentration near z = 1. For 
f'HaliZ = 1.5, the velocity is essentially that for locally fully developed flow. Therefore 
the present results quantify the relationship between the wall slope and Hartmann 
number for blocked and free flows. 
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